Agilent 85331B/85332B Solid State Switches
 85331B SP2T 45 MHz to 50 GHz
 85332B SP4T 45 MHz to 50 GHz

Technical Overview

Key Features

- Maximizes your operating frequency range from 45 MHz up to 50 GHz
- Minimizes cross-talk with a high port-to-port isolation of above 90 dB
- Increases your switching speed, typically less than $1 \mu \mathrm{~s}$, suitable for high speed applications

Description

Applications

Far-field antenna measurements

These products are ideally suited for antennas with multiple test ports, or applications that require measuring the co- and cross-polarization. One PIN switch can switch transmit polarization, and a second PIN switch can switch between the separate test ports of the antenna. With this technique, the co- and cross-polarization response of each test port can be measured in one rotation of the antenna.

Near-field antenna measurements

For near-field applications, both the co- and cross-polarized response of an antenna can be measured at multiple frequencies in a single scan across the antenna. For the dual polarized response, a PIN switch can be used to rapidly switch between the two probe polarizations.

Radar cross-section measurements

For Radar cross-section (RCS) applications, the ability to rapidly switch transmit and receive polarization allows full polarimetric RCS measurements to be made quickly and easily.

Complex switch configurations

Complex PIN switch trees with multiple outputs can be easily configured. Figure 2 shows conceptually how multiple PIN switches can be configured. Configurations such as these are used in making phased-array antenna measurements.

Multiple channel controller
Figure 2. Example of a 1P16T switch configuration constructed from modular components

Specifications

Specifications refer to the performance standards or limits against which the PIN diode switches are tested.

Typical characteristics are included for additional information only and they are not specifications. These are denoted as "typical", "nominal" or "approximate".

Table 1. 85331/32B specifications

Model number	Frequency range (GHz)	Insertion loss (dB)	Isolation (dB)	Return loss (OFF port) (dB)	Return loss (ON port) (dB)	Return loss (COM port) (dB)
$\mathbf{8 5 3 3 1 B}$	0.045 to 0.5	-2.0	-85	-19.0	-10.0	-10.0
SP2T	0.5 to 18	-4.5	-90	-19.0	-10.0	-10.0
	18 to 26.5	-6.0	-90	-12.5	-6.0	-5.5
	26.5 to 40	-10.0	-85	-10.0	-6.0	-4.5
	40 to 50	-15.5	-75	-6.0	-4.5	-4.0
$85332 B$	0.045 to 0.5	-2.0	-85	-19.0	-9.0	-10.0
SP4T	0.5 to 18	-4.5	-90	-19.0	-9.0	-10.0
	18 to 26.5	-7.0	-90	-12.5	-5.0	-5.5
	26.5 to 40	-12.0	-85	-10.0	-4.5	-4.0
	40 to 50	-21.5^{1}	-75	-6.0	-4.5	-4.0

Typical switching speed: less than $1 \mu \mathrm{~s}$. (The switch module can switch from one port to another in less than $1 \mu \mathrm{~s}$.)

Table 2. Absolute maximum rating for $85331 / 32$ B solid state switches

	Min	Nominal	Max	Unit
RF input power (average)			+27	dBm
Vdc bias turn on a port	-6.65	-7	-7.35	V
Current drawn for On port		40		mA
Vdc bias turn off a port	5.98	6.3	6.62	V
Current drawn for Off port		120		mA

Pin $1=$ Port 1 on/off bias
Pin $2=$ Port 2 on/off bias
Pin $3=$ Port 3 on/off bias (not connected for 85331B)
Pin $4=$ Port 4 on/off bias (not connected for 85331B) Pin $5=$ Common/ground (OVDC)
Pins 6, $7=$ Not connected

Figure 3. Bias connector pin locations

[^0]
Environmental Specifications

The $85331 / 32 \mathrm{~B}$ switches are designed to fully comply with Agilent Technologies' product operating environment specifications. The following summarizes the environmental specifications for these products.

Temperature:

Operating $\quad-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Storage $\quad-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Cycling $\quad-45^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ cycles @ $20^{\circ} \mathrm{C}$ per minute, 20 minutes dwell time per MIL-STD-833F, Method 1010.8, Condition C (modified)

Humidity:

Operating $\quad 5 \%$ to 95% at to $+40^{\circ} \mathrm{C}$ or less (non condensing)
Storage $\quad 5 \%$ to 95% at to $+65^{\circ} \mathrm{C}$ or less (non condensing)

Shock:

Half-sine, $\quad 100 \mathrm{G} @ 6 \mathrm{~ms}, 3$ shock pulses per orientation
smoothed

Vibration:

Broadband $\quad 50$ to $2000 \mathrm{~Hz}, 7.0 \mathrm{G}$ rms, 15 minutes, per MIL-STD-833F,
random
Method 2026-1 (modified)

Altitude:
Operating $\quad<4,600$ meters (15,000 feet)
Storage $\quad<15,300$ meters $(50,000$ feet $)$

ESD Immunity:

Contact discharge 15 kV (to outer conductor) per IEC 61000-4-2
Air discharge $\quad 6 \mathrm{kV}$ (to center pin) per IEC 61000-4-2

Mechanical Dimensions

Figure 4. Product mechanical outline

Dimensions are in mm (inches) nominal, unless otherwise specified.

Size and Weight

$57 \mathrm{~mm}\left(2.244^{\prime \prime}\right) \times 65 \mathrm{~mm}(2.56 \mathrm{~mm}) \times 73 \mathrm{~mm}(2.88 \mathrm{~mm}) \quad 0.36 \mathrm{~kg}(0.79 \mathrm{lbs})$

Typical Performance 85331B

Figure 5. 85331B insertion loss vs. frequency (typical)

Typical Performance 85331B (continued)

Figure 6. 85331B common port return loss vs. frequency (typical)

85331B ON port return loss vs. frequency (typical)

[^1]Typical Performance 85331B (continued)

Figure 8. 85331B OFF port return loss vs. frequency (typical)

Figure 9. 85331B isolation vs. frequency (typical)

Typical Performance 85332B

Figure 10. 85332B insertion loss vs. frequency (typical)

Figure 11. 85332B common port return loss vs. frequency (typical)

Typical Performance
 85332B (continued)

Figure 12. 85332B ON port return loss vs. frequency (typical)

85332B OFF port return loss vs. frequency (typical)

Figure 13. 85332B OFF port return loss vs. frequency (typical)

Typical Performance
85332B (continued)

Figure 14. 85332B isolation vs. frequency (typical)

85331B 0ptions	SP2T 45 MHz to $\mathbf{5 0} \mathbf{~ G H z}$ solid state switch
85331B-001	Switch control cable -1 meter
85331B-002	Switch control cable -2 meter
85331B-005	Switch control cable -5 meter
85331B-010	Switch control cable -10 meter
85331B-015	Switch control cable -15 meter
85332B	SP4T 45 MHz to 50 GHz solid state switch
0ptions	
85332B-001	Switch control cable -1 meter
85332B-002	Switch control cable -2 meter
85332B-005	Switch control cable -5 meter
85332B-010	Switch control cable -10 meter
85332B-015	Switch control cable -15 meter

http://www.agilent.com/find/mta

N9397A/C Solid State Switches, Flyer, literature number 5989-3729EN
N9397A/C Solid State Switches, Technical Overview, literature number 5989-4031EN
Solid State Switches, Application Note, literature number 5989-5189EN
Agilent Antenna Test, Selection Guide, literature number 5968-6759E

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent Technologies' Test and Measurement

Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

www.agilent.com

For more information on Agilent

Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Phone or Fax

United States:
(tel) 8008294444
(fax) 8008294433

Canada:

(tel) 8778944414
(fax) 8007464866

China:

(tel) 8008100189
(fax) 8008202816

Europe:

(tel) 31205472111
Japan:
(tel) (81) 426567832
(fax) (81) 426567840

Korea:

(tel) (080) 7690800
(fax) (080)769 0900

Latin America:

(tel) (305) 2697500

Taiwan:

(tel) 0800047866
(fax) 0800286331

Other Asia Pacific Countries:

(tel) (65) 63758100
(fax) (65) 67550042
Email: tm_ap@agilent.com
Contacts revised: 05/27/05

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2006
Printed in USA, May 25, 2006
5989-4960EN

[^0]: 1. COM port-to-port $1 \& 4$.
 2. COM port-to-port $2 \& 3$.
[^1]: Figure 7. 85331B ON port return loss vs. frequency (typical)

